login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A375978
Number of subsets of {1,2,...,n} such that no two elements differ by 3 or 5.
1
1, 2, 4, 8, 12, 18, 24, 34, 47, 73, 111, 177, 267, 409, 600, 900, 1324, 2004, 2996, 4564, 6848, 10377, 15513, 23385, 34953, 52685, 78969, 119138, 178840, 269604, 404656, 609310, 914548, 1376530, 2067231, 3111457, 4674751, 7034897, 10570855, 15903377, 23898528
OFFSET
0,2
LINKS
Michael A. Allen, Combinations without specified separations, Communications in Combinatorics and Optimization (in press).
Index entries for linear recurrences with constant coefficients, signature (1,1,-1,1,-1,1,1,1,-1,-1,-1,-1).
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-4) - a(n-5) + a(n-6) + a(n-7) + a(n-8) - a(n-9) - a(n-10) - a(n-11) - a(n-12) for n >= 12.
G.f.: (1 + x + x^2 + 3*x^3 + x^4 + x^5 - x^6 - 3*x^7 - 4*x^8 - 3*x^9 - 2*x^10 - x^11)/(1 - x - x^2 + x^3 - x^4 + x^5 - x^6 - x^7 - x^8 + x^9 + x^10 + x^11 + x^12).
EXAMPLE
For n = 6, the 24 subsets are {}, {1}, {2}, {1,2}, {3}, {1,3}, {2,3}, {1,2,3}, {4}, {2,4}, {3,4}, {2,3,4}, {5}, {1,5}, {3,5}, {1,3,5}, {4,5}, {3,4,5}, {6}, {2,6}, {4,6}, {2,4,6}, {5,6}, {4,5,6}.
MATHEMATICA
CoefficientList[Series[(1 + x + x^2 + 3*x^3 + x^4 + x^5 - x^6 - 3*x^7 - 4*x^8 - 3*x^9 - 2*x^10 - x^11)/(1 - x - x^2 + x^3 - x^4 + x^5 - x^6 - x^7 - x^8 + x^9 + x^10 + x^11 + x^12), {x, 0, 38}], x]
LinearRecurrence[{1, 1, -1, 1, -1, 1, 1, 1, -1, -1, -1, -1}, {1, 2, 4, 8, 12, 18, 24, 34, 47, 73, 111, 177}, 39]
CROSSREFS
See A375981 for other sequences related to restricted combinations.
Column k=20 of A376033.
Sequence in context: A080476 A256885 A293495 * A330130 A053799 A343949
KEYWORD
easy,nonn
AUTHOR
Michael A. Allen, Sep 20 2024
STATUS
approved