login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052404
Numbers without 2 as a digit.
14
0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 86, 87, 88, 89
OFFSET
1,3
REFERENCES
M. J. Halm, Word Weirdness, Mpossibilities 66 (Feb. 1998), p. 5.
LINKS
M. J. Halm, Games
M. F. Hasler, Numbers avoiding certain digits, OEIS Wiki, Jan 12 2020.
FORMULA
If the offset were changed to 0: a(0) = 0, a(n+1) = f(a(n)+1,f(a(n)+1) where f(x,y) = if x<10 and x<>2 then y else if x mod 10 = 2 then f(y+1,y+1) else f(floor(x/10),y). - Reinhard Zumkeller, Mar 02 2008
a(n) = replace digits d > 1 by d + 1 in base-9 representation of n - 1. - Reinhard Zumkeller, Oct 07 2014
Sum_{k>1} 1/a(k) = A082831 = 19.257356... (Kempner series). - Bernard Schott, Jan 12 2020, edited by M. F. Hasler, Jan 14 2020
MAPLE
a:= proc(n) local l, m; l, m:= 0, n-1;
while m>0 do l:= (d->
`if`(d<2, d, d+1))(irem(m, 9, 'm')), l
od; parse(cat(l))/10
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 01 2016
MATHEMATICA
ban2Q[n_]:=FreeQ[IntegerDigits[n], 2]==True; Select[Range[0, 89], ban2Q[#] &] (* Jayanta Basu, May 17 2013 *)
Select[Range[0, 100], DigitCount[#, 10, 2]==0&] (* Harvey P. Dale, Apr 13 2015 *)
PROG
(Magma) [ n: n in [0..89] | not 2 in Intseq(n) ]; // Bruno Berselli, May 28 2011
(sh) seq 0 1000 | grep -v 2; # Joerg Arndt, May 29 2011
(Haskell)
a052404 = f . subtract 1 where
f 0 = 0
f v = 10 * f w + if r > 1 then r + 1 else r where (w, r) = divMod v 9
-- Reinhard Zumkeller, Oct 07 2014
(PARI) lista(nn, d=2) = {for (n=0, nn, if (!vecsearch(vecsort(digits(n), , 8), d), print1(n, ", ")); ); } \\ Michel Marcus, Feb 21 2015
(PARI)
apply( {A052404(n)=fromdigits(apply(d->d+(d>1), digits(n-1, 9)))}, [1..99])
next_A052404(n, d=digits(n+=1))={for(i=1, #d, d[i]==2&&return((1+n\d=10^(#d-i))*d)); n} \\ least a(k) > n: if there's a digit 2 in n+1, replace the first occurrence by 3 and all following digits by 0.
(A052404_vec(N)=vector(N, i, N=if(i>1, next_A052404(N))))(99) \\ first N terms
select( {is_A052404(n)=!setsearch(Set(digits(n)), 2)}, [0..99])
(A052404_upto(N)=select( is_A052404, [0..N]))(99) \\ M. F. Hasler, Jan 11 2020
(Python)
from gmpy2 import digits
def A052404(n): return int(''.join(str(int(d)+1) if d>'1' else d for d in digits(n-1, 9))) # Chai Wah Wu, Aug 30 2024
CROSSREFS
Cf. A004177, A004721, A072809, A082831 (Kempner series).
Cf. A052382 (without 0), A052383 (without 1), A052405 (without 3), A052406 (without 4), A052413 (without 5), A052414 (without 6), A052419 (without 7), A052421 (without 8), A007095 (without 9).
See A038604 for the subset of primes. - M. F. Hasler, Jan 11 2020
Sequence in context: A026511 A321153 A304814 * A298112 A026417 A026421
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Mar 13 2000
EXTENSIONS
Offset changed by Reinhard Zumkeller, Oct 07 2014
STATUS
approved