|
|
A051942
|
|
a(n) = n*(n+1)/2 - 45.
|
|
12
|
|
|
0, 10, 21, 33, 46, 60, 75, 91, 108, 126, 145, 165, 186, 208, 231, 255, 280, 306, 333, 361, 390, 420, 451, 483, 516, 550, 585, 621, 658, 696, 735, 775, 816, 858, 901, 945, 990, 1036, 1083, 1131, 1180, 1230, 1281, 1333, 1386, 1440, 1495, 1551, 1608, 1666
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
9,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) = (n^2 + n - 90)/2 = (n-9)*(n+10)/2 = n*(n+1)/2 - 45.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), n>=13.
G.f.: x^10*(10 - 9*x)/(1-x)^3.
Sum_{n>=10} 1/a(n) = 2*A001008(19)/(19*A002805(19)) = 275295799/737176440.
Sum_{n>=10} (-1)^n/a(n) = 4*log(2)/19 - 33464927/442305864. (End)
E.g.f.: (1/8!)*(1814400 +1774080*x +846720*x^2 +262080*x^3 +58800*x^4 +10080*x^5 +1344*x^6 +136*x^7 +9*x^8 - (1814400 -40320*x -20160*x^2)*exp(x)). - G. C. Greubel, Jul 31 2022
|
|
EXAMPLE
|
a(10) = 10 + 0 = 10;
a(11) = 11 + 10 = 21;
a(12) = 12 + 21 = 33.
|
|
MAPLE
|
|
|
MATHEMATICA
|
#-45&/@Drop[Accumulate[Range[60]], 8] (* Harvey P. Dale, Jul 24 2011 *)
LinearRecurrence[{3, -3, 1}, {0, 10, 21}, 60] (* Harvey P. Dale, Mar 25 2015 *)
|
|
PROG
|
(PARI) a(n)=(n-9)*(n+10)/2;
(Magma) [(n-9)*(n+10)/2: n in [9..80]]; // G. C. Greubel, Jul 31 2022
(SageMath) [(n-9)*(n+10)/2 for n in (9..80)] # G. C. Greubel, Jul 31 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nice,nonn
|
|
AUTHOR
|
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|