|
|
A051939
|
|
Truncated triangular pyramid numbers: a(n) = (n-5)*(n^2 + 8*n - 66)/6.
|
|
1
|
|
|
3, 13, 31, 58, 95, 143, 203, 276, 363, 465, 583, 718, 871, 1043, 1235, 1448, 1683, 1941, 2223, 2530, 2863, 3223, 3611, 4028, 4475, 4953, 5463, 6006, 6583, 7195, 7843, 8528, 9251, 10013, 10815, 11658, 12543, 13471, 14443, 15460, 16523, 17633, 18791
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
6,1
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=6..n} (k*(k+1)/2 - 18).
Equals binomial transform of (3, 10, 8, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(6)=3, a(7)=13, a(8)=31, a(9)=58. - Harvey P. Dale, Oct 22 2011
Sum_{k>=6} 1/a(k) = (3/82)*((9*sqrt(82) - 82)*H(9+sqrt(82)) - (9*sqrt(82) + 82)*H(9-sqrt(82))) = 0.5039898035928909... where H(x) = Integral_{t=0..1} (1 - t^x)/(1 - t) dt is the function that interpolates the harmonic numbers. - Stefano Spezia, Apr 17 2022
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{4, -6, 4, -1}, {3, 13, 31, 58}, 60] (* Harvey P. Dale, Oct 22 2011 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nice,nonn
|
|
AUTHOR
|
Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 21 1999
|
|
STATUS
|
approved
|
|
|
|