login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051643
Central elements in Parker's partition triangle.
5
1, 3, 20, 169, 1667, 18084, 208960, 2527074, 31630390, 406680465, 5342750699, 71442850111, 969548468960, 13323571588607, 185072895183632, 2594890728951909, 36681505784903758, 522291180086851188, 7484621370716999785, 107876522368295972285, 1562916545414144667559
OFFSET
0,2
LINKS
R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
FORMULA
a(n) = coefficient of q^((m^2-1)/2) = q(2*n*(n+1)) in the q-binomial coefficient [2*m, m] = [2*(2*n+1), 2*n+1], where m = 2*n+1. [Corrected by Petros Hadjicostas, May 30 2020]
a(n) is the number of partitions of 2*n*(n+1) into at most 2*n+1 parts each no bigger than 2*n+1. - Petros Hadjicostas, May 30 2020
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
<n, 0, b(n, i-1, t)+b(n-i, min(i, n-i), t-1)))
end:
a:= n-> b(2*n*(n+1), 2*n+1$2):
seq(a(n), n=0..20); # Alois P. Heinz, May 30 2020
MATHEMATICA
a[n_] := SeriesCoefficient[QBinomial[2(2n+1), 2n+1, q], {q, 0, 2n(n+1)}];
Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 19 2019 *)
CROSSREFS
KEYWORD
easy,nonn,nice
EXTENSIONS
a(18)-a(20) from Alois P. Heinz, May 30 2020
STATUS
approved