login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051512
a(n) = floor(tan(prime(n))).
1
-3, -1, -4, 0, -226, 0, 3, 0, 1, 0, -1, -1, 0, -2, -1, -1, -1, 3, 1, -4, 0, 0, 3, 1, -1, 0, -1, 0, -2, -1, 4, -2, -3, 0, 4, 0, -1, -1, 0, 0, -1, -3, -1, 4, -2, 1, 0, -1, 1, -1, 0, 0, -2, -1, -1, -2, -3, 1, 0, 5, 0, 1, -2, -1, -3, -1, 2, 1, 6, 0, 2, 1, -1, -2, -3, -1, -1, 2, -3, 0, 2, 0, 0, -1, -2, 0, -1, 9, -2, 2, -2, 10
OFFSET
1,1
LINKS
Matt Parker, What is the biggest tangent of a prime?, Channel Stand-up Maths, YouTube, Aug 19 2020.
FORMULA
a(n) = A000503(prime(n)), i.e., this A051512 = A000503 o A000040. - M. F. Hasler, Sep 10 2020
MATHEMATICA
Table[Floor[Tan[Prime[n]]], {n, 100}] (* Wesley Ivan Hurt, Mar 28 2015 *)
PROG
(PARI) apply( A051512(n)=tan(prime(n))\1, [1..77]) \\ M. F. Hasler, Sep 10 2020
CROSSREFS
KEYWORD
sign
STATUS
approved