Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Sep 11 2020 12:06:45
%S -3,-1,-4,0,-226,0,3,0,1,0,-1,-1,0,-2,-1,-1,-1,3,1,-4,0,0,3,1,-1,0,-1,
%T 0,-2,-1,4,-2,-3,0,4,0,-1,-1,0,0,-1,-3,-1,4,-2,1,0,-1,1,-1,0,0,-2,-1,
%U -1,-2,-3,1,0,5,0,1,-2,-1,-3,-1,2,1,6,0,2,1,-1,-2,-3,-1,-1,2,-3,0,2,0,0,-1,-2,0,-1,9,-2,2,-2,10
%N a(n) = floor(tan(prime(n))).
%H Matt Parker, <a href="https://youtu.be/A7eJb8n8zAw">What is the biggest tangent of a prime?</a>, Channel Stand-up Maths, YouTube, Aug 19 2020.
%F a(n) = A000503(prime(n)), i.e., this A051512 = A000503 o A000040. - _M. F. Hasler_, Sep 10 2020
%t Table[Floor[Tan[Prime[n]]], {n, 100}] (* _Wesley Ivan Hurt_, Mar 28 2015 *)
%o (PARI) apply( A051512(n)=tan(prime(n))\1, [1..77]) \\ _M. F. Hasler_, Sep 10 2020
%Y Cf. A000503, A000040, A088306, A249836.
%K sign
%O 1,1
%A _N. J. A. Sloane_