OFFSET
0,1
COMMENTS
F. Harary and E. M. Palmer derive certain functional equations and, using the methods of G. Polya (Acta Math. (1937) Vol. 68, 145-254) and R. Otter (Ann. of Math. (2) 49 (1948), 583-599; Math. Rev. 10, 53), prove that the limiting probability of a fixed point in a large random tree, whether rooted or not, is 0.6995...
LINKS
D. J. Broadhurst and D. Kreimer, Renormalization automated by Hopf algebra, arXiv:hep-th/9810087, 1998.
Frank Harary and Edgar M. Palmer, The probability that a point of a tree is fixed, Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 3, 407-415.
EXAMPLE
0.6995388700609892332166312186...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved