The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A051496 Decimal expansion of probability that a point of an infinite (rooted) tree is fixed by every automorphism of the tree. 0
 6, 9, 9, 5, 3, 8, 8, 7, 0, 0, 6, 0, 9, 8, 9, 2, 3, 3, 2, 1, 6, 6, 3, 1, 2, 1, 8, 6, 2, 0, 1, 4, 2, 7, 6, 7, 1, 6, 3, 6, 8, 1, 4, 5, 5, 4, 6, 3, 5, 4, 2, 1, 6, 1, 9, 8, 9, 7, 5, 9, 2, 2, 0, 3, 2, 0, 0, 4, 6, 4, 1, 9, 2, 5, 6, 2, 9, 5, 6, 1, 2, 1, 4, 8, 7, 8, 4, 8, 0, 6, 0, 2, 8, 2, 6, 5, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS F. Harary and E. M. Palmer derive certain functional equations and, using the methods of G. Polya (Acta Math. 68 (1937), 145 254) and R. Otter (Ann. of Math. (2) 49 (1948), 583 - 599; Math. Rev. 10, 53), prove that the limiting probability of a fixed point in a large random tree, whether rooted or not, is 0.6995 ... REFERENCES Harary, Frank; Palmer, Edgar M; The probability that a point of a tree is fixed; Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 3, 407-415. LINKS D. J. Broadhurst and D. Kreimer, Rooted-tree paper EXAMPLE 0.6995388700609892332166312186... CROSSREFS Equals \lim_{n\to\infty} A005200[n]/(n*A000081[n]) = \lim_{n\to\infty} A005201[n]/(n*A000055[n]) Sequence in context: A019902 A021147 A246709 * A330564 A195296 A273951 Adjacent sequences:  A051493 A051494 A051495 * A051497 A051498 A051499 KEYWORD nonn,cons AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 18:59 EDT 2020. Contains 334832 sequences. (Running on oeis4.)