|
|
A049917
|
|
a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2^(p+1) + 2 - n and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 3, and a(3) = 1.
|
|
2
|
|
|
1, 3, 1, 2, 6, 11, 23, 44, 90, 137, 295, 602, 1209, 2422, 4845, 9688, 19378, 29069, 62981, 128385, 257983, 516573, 1033453, 2067064, 4134175, 8268396, 16536813, 33073638, 66147281, 132294566, 264589133, 529178264, 1058356530
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
MAPLE
|
s:= proc(n) option remember; `if`(n < 1, 0, a(n) + s(n - 1)) end proc:
a := proc(n) option remember;
`if`(n < 4, [1, 3, 1][n], s(n - 1) - a(2^ceil(log[2](n - 1)) + 2 - n)):
end proc:
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|