login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201675 Decimal expansion of greatest x satisfying 7*x^2 - 1 = csc(x) and 0<x<Pi. 3
3, 1, 2, 6, 7, 6, 3, 3, 5, 4, 8, 1, 7, 8, 4, 3, 9, 5, 8, 3, 2, 4, 7, 1, 0, 5, 4, 3, 0, 4, 1, 3, 9, 3, 5, 0, 0, 8, 6, 9, 5, 6, 0, 6, 7, 8, 0, 4, 2, 4, 0, 6, 1, 3, 9, 9, 3, 3, 0, 3, 2, 1, 0, 4, 5, 3, 3, 0, 3, 9, 5, 9, 0, 7, 3, 7, 1, 4, 3, 9, 0, 9, 5, 1, 1, 5, 5, 1, 5, 2, 7, 8, 9, 8, 4, 2, 3, 6, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201564 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least:  0.62272709431369510379503993928652289013...

greatest:  3.12676335481784395832471054304139350...

MATHEMATICA

a = 7; c = -1;

f[x_] := a*x^2 + c; g[x_] := Csc[x]

Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]

RealDigits[r]     (* A201674 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.0, 3.14}, WorkingPrecision -> 110]

RealDigits[r]     (* A201675 *)

PROG

(PARI) a=7; c=-1; solve(x=3, 3.14, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018

CROSSREFS

Cf. A201564.

Sequence in context: A318552 A183289 A183253 * A279859 A201655 A049917

Adjacent sequences:  A201672 A201673 A201674 * A201676 A201677 A201678

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 20:13 EDT 2022. Contains 356067 sequences. (Running on oeis4.)