|
|
A049915
|
|
a(n) = a(1) + a(2) + ... + a(n-1) - a(m) for n >= 4, where m = 2*n - 2 - 2^(p+1) and p is the unique integer such that 2^p < n - 1 <= 2^(p+1), starting with a(1) = 1, a(2) = 2 and a(3) = 4.
|
|
3
|
|
|
1, 2, 4, 5, 7, 17, 31, 50, 67, 182, 361, 710, 1387, 2642, 4756, 7580, 10222, 28022, 56041, 112070, 224107, 448082, 895636, 1789340, 3573742, 7127042, 14170036, 28004060, 54666862, 103996022, 187115026, 298238090, 402234112
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
PROG
|
(PARI) lista(nn) = { my(va = vector(nn)); va[1] = 1; va[2] = 2; va[3] = 4; my(sa = vecsum(va)); for (n=4, nn, va[n] = sa - va[2*n - 2 - 2^ceil(log(n-1)/log(2))]; sa += va[n]; ); va; } \\ Petros Hadjicostas, Apr 26 2020 (with nn > 2)
|
|
CROSSREFS
|
Cf. A049914 (similar, but with minus a(m/2)), A049962 (similar, but with plus a(m/2)), A049963 (similar, but with plus a(m)).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|