login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049765
Triangular array T, read by rows: T(n,k) = (k mod n) + (n mod k), for k = 1..n and n >= 1.
2
0, 1, 0, 1, 3, 0, 1, 2, 4, 0, 1, 3, 5, 5, 0, 1, 2, 3, 6, 6, 0, 1, 3, 4, 7, 7, 7, 0, 1, 2, 5, 4, 8, 8, 8, 0, 1, 3, 3, 5, 9, 9, 9, 9, 0, 1, 2, 4, 6, 5, 10, 10, 10, 10, 0, 1, 3, 5, 7, 6, 11, 11, 11, 11, 11, 0, 1, 2, 3, 4, 7, 6, 12, 12, 12, 12, 12, 0
OFFSET
1,5
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
0;
1, 0;
1, 3, 0;
1, 2, 4, 0;
1, 3, 5, 5, 0;
1, 2, 3, 6, 6, 0;
1, 3, 4, 7, 7, 7, 0;
1, 2, 5, 4, 8, 8, 8, 0;
1, 3, 3, 5, 9, 9, 9, 9, 0;
1, 2, 4, 6, 5, 10, 10, 10, 10, 0;
...
MAPLE
seq(seq( `mod`(k, n) + `mod`(n, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019
MATHEMATICA
Table[Mod[k, n] + Mod[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)
PROG
(PARI) T(n, k) = k%n + n%k;
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 13 2019
(Magma) [[(k mod n) + (n mod k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019
(Sage) [[(k%n) + (n%k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> (k mod n) + (n mod k) ))); # G. C. Greubel, Dec 13 2019
CROSSREFS
Row sums are in A049766.
Sequence in context: A229654 A306288 A272188 * A343394 A194801 A361287
KEYWORD
nonn,tabl
STATUS
approved