login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A049765 Triangular array T, read by rows: T(n,k) = (k mod n) + (n mod k), for k = 1..n and n >= 1. 2
0, 1, 0, 1, 3, 0, 1, 2, 4, 0, 1, 3, 5, 5, 0, 1, 2, 3, 6, 6, 0, 1, 3, 4, 7, 7, 7, 0, 1, 2, 5, 4, 8, 8, 8, 0, 1, 3, 3, 5, 9, 9, 9, 9, 0, 1, 2, 4, 6, 5, 10, 10, 10, 10, 0, 1, 3, 5, 7, 6, 11, 11, 11, 11, 11, 0, 1, 2, 3, 4, 7, 6, 12, 12, 12, 12, 12, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

LINKS

G. C. Greubel, Rows n = 1..100 of triangle, flattened

EXAMPLE

Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:

  0;

  1, 0;

  1, 3, 0;

  1, 2, 4, 0;

  1, 3, 5, 5, 0;

  1, 2, 3, 6, 6,  0;

  1, 3, 4, 7, 7,  7,  0;

  1, 2, 5, 4, 8,  8,  8,  0;

  1, 3, 3, 5, 9,  9,  9,  9,  0;

  1, 2, 4, 6, 5, 10, 10, 10, 10, 0;

  ...

MAPLE

seq(seq( `mod`(k, n) + `mod`(n, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019

MATHEMATICA

Table[Mod[k, n] + Mod[n, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)

PROG

(PARI) T(n, k) = k%n + n%k;

for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 13 2019

(MAGMA) [[(k mod n) + (n mod k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019

(Sage) [[(k%n) + (n%k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019

(GAP) Flat(List([1..15], n-> List([1..n], k-> (k mod n) + (n mod k) ))); # G. C. Greubel, Dec 13 2019

CROSSREFS

Row sums are in A049766.

Cf. A048158, A049767, A049768.

Sequence in context: A229654 A306288 A272188 * A194801 A273901 A014573

Adjacent sequences:  A049762 A049763 A049764 * A049766 A049767 A049768

KEYWORD

nonn,tabl

AUTHOR

Clark Kimberling

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 11 04:03 EDT 2020. Contains 336421 sequences. (Running on oeis4.)