login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A229654
Quadrisection a(4n+k) gives k-th differences of a for k=0..3 with a(n)=0 for n<3 and a(3)=1.
8
0, 0, 0, 1, 0, 0, 1, -3, 0, 1, -2, 3, 1, -1, 1, 0, 0, 0, 1, -6, 0, 1, -5, 12, 1, -4, 7, -9, -3, 3, -2, -2, 0, 1, -4, 12, 1, -3, 8, -15, -2, 5, -7, 7, 3, -2, 0, 4, 1, -2, 4, -7, -1, 2, -3, 4, 1, -1, 1, -1, 0, 0, 0, 1, 0, 0, 1, -9, 0, 1, -8, 21, 1, -7, 13, -18
OFFSET
0,8
LINKS
FORMULA
a(4*n) = a(n),
a(4*n+1) = a(n+1) - a(n),
a(4*n+2) = a(n+2) - 2*a(n+1) + a(n),
a(4*n+3) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n).
MAPLE
a:= proc(n) option remember; (m-> `if`(n<4, `if`(n=3, 1, 0), add(
a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))(irem(n, 4, 'q'))
end:
seq(a(n), n=0..100);
MATHEMATICA
a[n_] := a[n] = Module[{ m, q}, {q, m} = QuotientRemainder[n, 4]; If[n < 4, If[n == 3, 1, 0], Sum[a[q + m - j]*(-1)^j*Binomial[m, j], {j, 0, m}]]];
Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 09 2018, from Maple *)
KEYWORD
sign,eigen,look
AUTHOR
Alois P. Heinz, Sep 27 2013
STATUS
approved