login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A049767
Triangular array T, read by rows: T(n,k) = (k^2 mod n) + (n^2 mod k), for k = 1..n and n >= 1.
5
0, 1, 0, 1, 2, 0, 1, 0, 2, 0, 1, 5, 5, 2, 0, 1, 4, 3, 4, 2, 0, 1, 5, 3, 3, 8, 2, 0, 1, 4, 2, 0, 5, 8, 2, 0, 1, 5, 0, 8, 8, 3, 8, 2, 0, 1, 4, 10, 6, 5, 10, 11, 8, 2, 0, 1, 5, 10, 6, 4, 4, 7, 10, 8, 2, 0, 1, 4, 9, 4, 5, 0, 5, 4, 9, 8, 2, 0, 1, 5, 10, 4
OFFSET
1,5
FORMULA
T(n, k) = A048152(n, k) + A049759(n, k). - Michel Marcus, Nov 21 2019
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k >= 1) begins as follows:
0;
1, 0;
1, 2, 0;
1, 0, 2, 0;
1, 5, 5, 2, 0;
1, 4, 3, 4, 2, 0;
1, 5, 3, 3, 8, 2, 0;
1, 4, 2, 0, 5, 8, 2, 0;
1, 5, 0, 8, 8, 3, 8, 2, 0;
1, 4, 10, 6, 5, 10, 11, 8, 2, 0;
...
MAPLE
seq(seq( `mod`(k^2, n) + `mod`(n^2, k), k = 1..n), n = 1..15); # G. C. Greubel, Dec 13 2019
MATHEMATICA
Table[PowerMod[k, 2, n] + PowerMod[n, 2, k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Dec 13 2019 *)
PROG
(PARI) T(n, k) = lift(Mod(k, n)^2) + lift(Mod(n, k)^2);
for(n=1, 15, for(k=1, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Dec 13 2019
(Magma) [[Modexp(k, 2, n) + Modexp(n, 2, k): k in [1..n]]: n in [1..15]]; // G. C. Greubel, Dec 13 2019
(Sage) [[power_mod(k, 2, n) + power_mod(n, 2, k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Dec 13 2019
(GAP) Flat(List([1..15], n-> List([1..n], k-> PowerMod(k, 2, n) + PowerMod(n, 2, k) ))); # G. C. Greubel, Dec 13 2019
CROSSREFS
Row sums are in A049768.
Sequence in context: A158944 A156663 A139366 * A286351 A091394 A029881
KEYWORD
nonn,tabl
STATUS
approved