OFFSET
0,3
COMMENTS
Number of different prime signatures of the 2n-almost primes in A268390. - Peter Munn, Dec 02 2021
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..750
C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, Second Series, vol. 3 (1/4), 1902, 35-39.
R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, The Game of timber!, hal-00985731, 2013.
FORMULA
a(n) = A050314(2n, 0): column 0 of triangle.
EXAMPLE
For n=4 the 6 partitions of 8 are [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [2, 2, 2, 2], [1, 1, 1, 2, 3], [1, 1, 3, 3] and [4, 4].
MAPLE
read("transforms") : # defines XORnos
A048833 := proc(n)
local p, xrs, i, a ;
if n = 0 then
return 1 ;
end if;
a := 0 ;
for p in combinat[partition](2*n) do
xrs := op(1, p) ;
for i from 2 to nops(p) do
xrs := XORnos(xrs, op(i, p)) ;
end do:
if xrs = 0 then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Apr 29 2022
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, x^k, If[i < 1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]];
a[n_] := Coefficient[b[2n, 2n, 0], x, 0];
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 15 1999
STATUS
approved