login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048833
Number of starting positions of Nim with 2n pieces such that 2nd player wins. Partitions of 2n such that xor-sum of partitions is 0.
10
1, 1, 2, 4, 6, 10, 16, 31, 43, 68, 98, 153, 213, 317, 443, 704, 971, 1415, 1975, 2818, 3865, 5401, 7366, 10142, 13639, 18438, 24583, 32861, 43345, 57268, 75175, 99119, 129278, 168796, 219614, 284887, 368546, 475919, 614379, 788845, 1012117, 1293980, 1654090
OFFSET
0,3
COMMENTS
Number of different prime signatures of the 2n-almost primes in A268390. - Peter Munn, Dec 02 2021
LINKS
C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, Second Series, vol. 3 (1/4), 1902, 35-39.
R. J. Nowakowski, G. Renault, E. Lamoureux, S. Mellon and T. Miller, The Game of timber!, hal-00985731, 2013.
FORMULA
a(n) = A050314(2n, 0): column 0 of triangle.
EXAMPLE
For n=4 the 6 partitions of 8 are [1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 2, 2], [2, 2, 2, 2], [1, 1, 1, 2, 3], [1, 1, 3, 3] and [4, 4].
MAPLE
read("transforms") : # defines XORnos
A048833 := proc(n)
local p, xrs, i, a ;
if n = 0 then
return 1 ;
end if;
a := 0 ;
for p in combinat[partition](2*n) do
xrs := op(1, p) ;
for i from 2 to nops(p) do
xrs := XORnos(xrs, op(i, p)) ;
end do:
if xrs = 0 then
a := a+1 ;
end if;
end do:
a ;
end proc: # R. J. Mathar, Apr 29 2022
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n == 0, x^k, If[i < 1, 0, Sum[b[n-i*j, i-1, If[EvenQ[j], k, BitXor[i, k]]], {j, 0, n/i}]]];
a[n_] := Coefficient[b[2n, 2n, 0], x, 0];
Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Mar 25 2024, after Alois P. Heinz in A050314 *)
CROSSREFS
Cf. A050314.
Sequence in context: A059749 A334213 A164142 * A204656 A070689 A339312
KEYWORD
nonn
AUTHOR
Christian G. Bower, Jun 15 1999
STATUS
approved