login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339312
Sum over all partitions of n of the GCD of the number of parts and the number of distinct parts.
4
0, 1, 2, 4, 6, 10, 17, 23, 33, 47, 71, 92, 129, 169, 235, 299, 408, 525, 691, 885, 1147, 1427, 1832, 2312, 2878, 3635, 4519, 5631, 7002, 8637, 10514, 13055, 15864, 19396, 23530, 28702, 34746, 42210, 50671, 61224, 73506, 88394, 105447, 126398, 150588, 179075
OFFSET
0,3
LINKS
MAPLE
b:= proc(n, i, p, d) option remember; `if`(n=0, igcd(p, d),
add(b(n-i*j, i-1, p+j, d+signum(j)), j=`if`(i>1, 0..n/i, n)))
end:
a:= n-> b(n$2, 0$2):
seq(a(n), n=0..50);
MATHEMATICA
b[n_, i_, p_, d_] := b[n, i, p, d] = If[n == 0, GCD[p, d],
Sum[b[n - i*j, i - 1, p + j, d + Sign[j]],
{j, If[i > 1, Range[0, n/i], {n}]}]];
a[n_] := b[n, n, 0, 0];
a /@ Range[0, 50] (* Jean-François Alcover, Mar 09 2021, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Dec 02 2020
STATUS
approved