login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A339315
a(n) is the smallest number k such that k^2+1 divided by its largest prime factor is equal to F(2*n-1) for n > 0, or 0 if no such k exists, where F(n) is the Fibonacci sequence.
0
1, 3, 8, 34, 55, 144, 610, 233, 12166, 2584, 4181, 68260, 46368, 75025, 3917414, 464656, 1346269, 16349962
OFFSET
1,2
COMMENTS
a(n) is the smallest number k such that A248516(k) = A001519(n) for n > 0, or 0 if no such k exists, where A001519(n) = F(2*n-1) (bisection of the Fibonacci sequence), with F(n) = A000045(n).
We observe that a(2 + 3m) = A001519(1 + 3m) = A000045(1 + 6m) for m = 2, 3, 4, 5. For n = 6, this property no longer works.
For k > 0, a(3k - 1) is odd, a(3k) and a(3k+1) are even.
We observe that a(n)^2 + 1 is the product of two prime Fibonacci numbers for n = 2, 3, 4, 6, 7.
The first 18 terms of the sequence are Fibonacci numbers, except a(9), a(12), a(15), a(16) and a(18).
The corresponding sequence b(n) = (a(n)^2+1)/ A001519(n) is 2, 5, 13, 89, 89, 233, 1597, 89, 92681, 1597, 1597, 162593, 28657, 28657, 29842993, 160373, 514229. We observe that a majority of terms of b(n) are prime Fibonacci numbers, except b(9), b(12), b(15) and b(16).
EXAMPLE
a(4) = 34 because 34^2 + 1 = 13*89 = 1157, and 1157/89 = 13 = A248516(34) = A001519(4).
A curiosity: a(22) = 1134903170 = F(45) with F(45)^2 + 1 = F(43)*F(47) where F(43) and F(47) are prime Fibonacci numbers.
MAPLE
with(numtheory):with(combinat, fibonacci):
nn:=100:n0:=20:
for n from 1 to n0 do:
ii:=0:
for m from 1 to 10^10 while(ii=0) do:
x:=m^2+1:y:=factorset(x):n1:=nops(y):
z:=x/y[n1]:
if z = fibonacci(2*n-1)
then
ii:=1:printf(`%d %d \n`, n, m):
else
fi:
od:
od:
PROG
(PARI) a(n) = {my(k=1, f=fibonacci(2*n-1)); while ((k^2+1)/vecmax(factor(k^2+1)[, 1]) != f, k++); k; } \\ Michel Marcus, Nov 30 2020
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Nov 30 2020
STATUS
approved