login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A048678
Binary expansion of nonnegative integers expanded to "Zeckendorffian format" with rewrite rules 0->0, 1->01.
14
0, 1, 2, 5, 4, 9, 10, 21, 8, 17, 18, 37, 20, 41, 42, 85, 16, 33, 34, 69, 36, 73, 74, 149, 40, 81, 82, 165, 84, 169, 170, 341, 32, 65, 66, 133, 68, 137, 138, 277, 72, 145, 146, 293, 148, 297, 298, 597, 80, 161, 162, 325, 164, 329, 330, 661, 168, 337, 338, 677, 340
OFFSET
0,3
COMMENTS
No two adjacent 1-bits. Permutation of A003714.
Replace 1 with 01 in binary. - Ralf Stephan, Oct 07 2003
LINKS
N. J. A. Sloane, Transforms
FORMULA
a(n) = rewrite_0to0_1to01(n) [ Each 0->1, 1->10 in binary expansion of n ].
a(0)=0; a(n) = (3-(-1)^n)*a(floor(n/2))+(1-(-1)^n)/2. - Benoit Cloitre, Aug 31 2003
a(0)=0, a(2n) = 2a(n), a(2n+1) = 4a(n) + 1. - Ralf Stephan, Oct 07 2003
EXAMPLE
11=1011 in binary, thus is rewritten as 100101 = 37 in decimal.
MAPLE
rewrite_0to0_1to01 := proc(n) option remember; if(n < 2) then RETURN(n); else RETURN(((2^(1+(n mod 2))) * rewrite_0to0_1to01(floor(n/2))) + (n mod 2)); fi; end;
MATHEMATICA
f[n_] := FromDigits[ Flatten[IntegerDigits[n, 2] /. {1 -> {0, 1}}], 2]; Table[f@n, {n, 0, 60}] (* Robert G. Wilson v, Dec 11 2009 *)
PROG
(PARI) a(n)=if(n<1, 0, (3-(-1)^n)*a(floor(n/2))+(1-(-1)^n)/2)
(PARI) a(n) = if(n == 0, 0, my(A = -2); sum(i = 0, logint(n, 2), A++; if(bittest(n, i), 1 << (A++)))) \\ Mikhail Kurkov, Mar 14 2024
(Haskell)
a048678 0 = 0
a048678 x = 2 * (b + 1) * a048678 x' + b
where (x', b) = divMod x 2
-- Reinhard Zumkeller, Mar 31 2015
(Python)
def a(n):
return 0 if n==0 else (3 - (-1)**n)*a(n//2) + (1 - (-1)**n)//2
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 30 2017
(Python)
def A048678(n): return int(bin(n)[2:].replace('1', '01'), 2) # Chai Wah Wu, Mar 18 2024
CROSSREFS
MASKTRANS transform of A053644.
Cf. A124108.
Sequence in context: A120119 A364035 A298011 * A271586 A278508 A296208
KEYWORD
nonn,easy
STATUS
approved