OFFSET
1,2
COMMENTS
Equivalently, the number of distinct pairs (x^2-y^2, 2*x*y) mod n. - Andrew Howroyd, Aug 01 2018
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1000
EXAMPLE
The squares in Z_3[i] are 0, i, 2i, 1 and 2, therefore a(3)=5.
MATHEMATICA
GG[M_, s_] :=Table[Mod[(a + b I)^s, M], {a, M}, {b, M}] // Flatten // Union // Length; Table[GG[M, 2], {M, 1, 144}]
PROG
(PARI) a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, my(k=(i^2-j^2)%n + 1); v[k]=bitor(v[k], 1<<((2*i*j)%n)))); sum(j=1, n, hammingweight(v[j]))} \\ Andrew Howroyd, Aug 01 2018
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
José María Grau Ribas, Apr 10 2016
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Aug 01 2018
STATUS
approved