login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271586
Number of squares in Z_n[i].
2
1, 2, 5, 4, 9, 10, 25, 8, 37, 18, 61, 20, 49, 50, 45, 24, 81, 74, 181, 36, 125, 122, 265, 40, 121, 98, 329, 100, 225, 90, 481, 88, 305, 162, 225, 148, 361, 362, 245, 72, 441, 250, 925, 244, 333, 530, 1105, 120, 1177, 242, 405, 196, 729, 658, 549, 200, 905, 450, 1741, 180, 961, 962, 925, 344, 441, 610, 2245
OFFSET
1,2
COMMENTS
Equivalently, the number of distinct pairs (x^2-y^2, 2*x*y) mod n. - Andrew Howroyd, Aug 01 2018
LINKS
EXAMPLE
The squares in Z_3[i] are 0, i, 2i, 1 and 2, therefore a(3)=5.
MATHEMATICA
GG[M_, s_] :=Table[Mod[(a + b I)^s, M], {a, M}, {b, M}] // Flatten // Union // Length; Table[GG[M, 2], {M, 1, 144}]
PROG
(PARI) a(n)={my(v=vector(n)); for(i=0, n-1, for(j=0, n-1, my(k=(i^2-j^2)%n + 1); v[k]=bitor(v[k], 1<<((2*i*j)%n)))); sum(j=1, n, hammingweight(v[j]))} \\ Andrew Howroyd, Aug 01 2018
CROSSREFS
Cf. A000224.
Sequence in context: A364035 A298011 A048678 * A278508 A296208 A324142
KEYWORD
nonn,mult
AUTHOR
EXTENSIONS
Keyword:mult added by Andrew Howroyd, Aug 01 2018
STATUS
approved