OFFSET
1,1
COMMENTS
f(k) = sum of prime factors without multiplicity, so that f(1500) = 2+3+5 = 10.
The sequence is infinite because f(2^m * 5^s) = 2 + 5 = 7, for m,s >= 1. - Marius A. Burtea, Jan 21 2019
LINKS
Marius A. Burtea, Table of n, a(n) for n = 1..10122
MATHEMATICA
Select[ Range@280, (fi = FactorInteger@#; Plus @@ Last /@ fi > 1 && PrimeQ[Plus @@ First /@ fi]) &] (* Robert G. Wilson v, Dec 09 2005 *)
Select[Range[300], CompositeQ[#]&&PrimeQ[Total[FactorInteger[#][[;; , 1]]]]&] (* Harvey P. Dale, Sep 18 2024 *)
PROG
(Magma) [n:n in [1..300]| IsPrime(&+PrimeDivisors(n)) and not IsPrime(n)]; // Marius A. Burtea, Jan 21 2019
(PARI) is(n) = isprime(vecsum(factor(n)[, 1])) && !isprime(n) \\ David A. Corneth, Jan 21 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved