login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047606
Numbers that are congruent to {1, 2, 3, 5} mod 8.
1
1, 2, 3, 5, 9, 10, 11, 13, 17, 18, 19, 21, 25, 26, 27, 29, 33, 34, 35, 37, 41, 42, 43, 45, 49, 50, 51, 53, 57, 58, 59, 61, 65, 66, 67, 69, 73, 74, 75, 77, 81, 82, 83, 85, 89, 90, 91, 93, 97, 98, 99, 101, 105, 106, 107, 109, 113, 114, 115, 117, 121, 122, 123
OFFSET
1,2
FORMULA
From Bruno Berselli, Jul 17 2012: (Start)
G.f.: x*(1+x+x^2+2*x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2)).
a(n) = 2*n-3+(3-(-1)^n)*(1-i^(n*(n+1)))/4, where i=sqrt(-1). (End)
From Wesley Ivan Hurt, Jun 02 2016: (Start)
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(2k) = A047617(k), a(2k-1) = A047471(k). (End)
E.g.f.: (6 + 2*sin(x) - cos(x) + 4*(x - 1)*sinh(x) + (4*x - 5)*cosh(x))/2. - Ilya Gutkovskiy, Jun 03 2016
Sum_{n>=1} (-1)^(n+1)/a(n) = (3*sqrt(2)-2)*Pi/16 + (2-sqrt(2))*log(2)/16 + sqrt(2)*log(2+sqrt(2))/8. - Amiram Eldar, Dec 23 2021
MAPLE
A047606:=n->2*n-3+(3-I^(2*n))*(1-I^(n*(n+1)))/4: seq(A047606(n), n=1..100); # Wesley Ivan Hurt, Jun 02 2016
MATHEMATICA
Select[Range[120], MemberQ[{1, 2, 3, 5}, Mod[#, 8]] &] (* or *) LinearRecurrence[{1, 0, 0, 1, -1}, {1, 2, 3, 5, 9}, 60] (* Bruno Berselli, Jul 17 2012 *)
PROG
From Bruno Berselli, Jul 17 2012: (Start)
(Magma) [n: n in [1..120] | n mod 8 in [1, 2, 3, 5]];
(Maxima) makelist(2*n-3+(3-(-1)^n)*(1-%i^(n*(n+1)))/4, n, 1, 60);
(PARI) Vec((1+x+x^2+2*x^3+3*x^4)/((1+x)*(1-x)^2*(1+x^2))+O(x^60)) (End)
CROSSREFS
Sequence in context: A058314 A072735 A127149 * A226826 A333607 A047370
KEYWORD
nonn,easy
STATUS
approved