login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047603 Numbers that are congruent to {1, 2, 3, 4, 5} mod 8. 1
1, 2, 3, 4, 5, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 41, 42, 43, 44, 45, 49, 50, 51, 52, 53, 57, 58, 59, 60, 61, 65, 66, 67, 68, 69, 73, 74, 75, 76, 77, 81, 82, 83, 84, 85, 89, 90, 91, 92, 93, 97, 98, 99, 100, 101 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,1,-1).

FORMULA

From Chai Wah Wu, Jun 10 2016: (Start)

a(n) = a(n-1) + a(n-5) - a(n-6) for n > 6.

G.f.: x*(3*x^5 + x^4 + x^3 + x^2 + x + 1)/(x^6 - x^5 - x + 1). (End)

From Wesley Ivan Hurt, Jul 28 2016: (Start)

a(n) = a(n-5) + 8 for n>5.

a(n) = (40*n - 45 + 3*(n mod 5) + 3*((n+1) mod 5) + 3*((n+2) mod 5) + 3*((n+3) mod 5) - 12*((n+4) mod 5))/25.

a(5k) = 8k-3, a(5k-1) = 8k-4, a(5k-2) = 8k-5, a(5k-3) = 8k-6, a(5k-4) = 8k-7. (End)

a(n) = n + 3*floor((n-1)/5). - Wesley Ivan Hurt, Aug 08 2016

MAPLE

A047603:=n->8*floor(n/5)+[(1, 2, 3, 4, 5)][(n mod 5)+1]: seq(A047603(n), n=0..100); # Wesley Ivan Hurt, Jul 28 2016

MATHEMATICA

Select[Range[0, 100], MemberQ[{1, 2, 3, 4, 5}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jul 28 2016 *)

LinearRecurrence[{1, 0, 0, 0, 1, -1}, {1, 2, 3, 4, 5, 9}, 100] (* Vincenzo Librandi, Aug 08 2016 *)

PROG

(MAGMA) [n : n in [0..150] | n mod 8 in [1..5]]; // Wesley Ivan Hurt, Jul 28 2016

CROSSREFS

Sequence in context: A119955 A158573 A194398 * A047362 A032969 A095906

Adjacent sequences:  A047600 A047601 A047602 * A047604 A047605 A047606

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 5 07:54 EDT 2021. Contains 346464 sequences. (Running on oeis4.)