login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047608
Numbers that are congruent to {4, 5} mod 8.
2
4, 5, 12, 13, 20, 21, 28, 29, 36, 37, 44, 45, 52, 53, 60, 61, 68, 69, 76, 77, 84, 85, 92, 93, 100, 101, 108, 109, 116, 117, 124, 125, 132, 133, 140, 141, 148, 149, 156, 157, 164, 165, 172, 173, 180, 181, 188, 189, 196, 197, 204, 205, 212, 213, 220, 221, 228, 229
OFFSET
1,1
FORMULA
G.f.: x*(4+x+3*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Sep 22 2016
a(n) = 4n - 3*(1 + (-1)^n)/2 or a(n) = 4n - 3*((n-1) mod 2). - Heinz Ebert, Jul 12 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(2)-1)*Pi/16 - log(2)/4 + sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 19 2021
E.g.f.: 3 + ((8*x - 3)*exp(x) - 3*exp(-x))/2. - David Lovler, Aug 20 2022
MATHEMATICA
Select[Range[230], MemberQ[{4, 5}, Mod[#, 8]] &] (* Amiram Eldar, Dec 19 2021 *)
PROG
(PARI) a(n) = 4n - 3*(1 + (-1)^n)/2 \\ David Lovler, Aug 20 2022
CROSSREFS
Union of A017113 and A004770.
Sequence in context: A330223 A325688 A080277 * A266725 A308783 A130011
KEYWORD
nonn,easy
STATUS
approved