login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045821
Numerical distance between m-th and (n+m)-th circles in a loxodromic sequence of circles in which each 4 consecutive circles touch.
1
-1, 1, 1, 1, 7, 17, 49, 145, 415, 1201, 3473, 10033, 28999, 83809, 242209, 700001, 2023039, 5846689, 16897249, 48833953, 141132743, 407881201, 1178798545, 3406791025, 9845808799, 28454915537, 82236232177, 237667122001
OFFSET
0,5
REFERENCES
Coxeter, H. S. M. "Numerical distances among the circles in a loxodromic sequence." Nieuw Archief voor Wiskunde 16 (1998): 1-10. (Note the word "circles" in the title!)
LINKS
H. S. M. Coxeter, Loxodromic sequences of tangent spheres, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.
H. S. M. Coxeter, Numerical distances among the spheres in a loxodromic sequence, Math. Intell. 19(4) 1997 pp. 41-47. (Note the word "spheres" in the title!) See page 45.
FORMULA
a(n) = 2(a(n-1)+a(n-2)+a(n-3))-a(n-4).
a(n) = Sum{v=0 to [n/2]} binomial(n, 2v)*F(n-v-2) where F(m) is the m-th Fibonacci number.
G.f.: -(x^3-x^2-3*x+1) / (x^4-2*x^3-2*x^2-2*x+1). - Colin Barker, Sep 23 2013
Lim_{n -> inf} a(n)/a(n-1) = A318605. - A.H.M. Smeets, Sep 12 2018
MAPLE
with(combinat); F:=fibonacci;
f:=n->add(F(n-i)*binomial(n, 2*(i-2)), i=2..n-1);
[seq(f(n), n=3..32)]; # Produces the sequence from a(3) onwards - N. J. A. Sloane, Sep 03 2018
MATHEMATICA
CoefficientList[Series[-(x^3-x^2-3*x+1)/(x^4-2*x^3-2*x^2-2*x+1), {x, 0, 30}], x] (* Stefano Spezia, Sep 12 2018 *)
PROG
(PARI) Vec(-(x^3-x^2-3*x+1)/(x^4-2*x^3-2*x^2-2*x+1) + O(x^100)) \\ Colin Barker, Sep 23 2013
(GAP) a:=[-1, 1, 1, 1];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # Muniru A Asiru, Sep 12 2018
CROSSREFS
Cf. A027674.
Sequence in context: A179262 A018672 A221591 * A262754 A115914 A352616
KEYWORD
sign,easy
AUTHOR
EXTENSIONS
Reference and formulas from Floor van Lamoen
STATUS
approved