|
|
A045820
|
|
Theta series of D8 lattice with respect to midpoint of edge.
|
|
3
|
|
|
2, 24, 124, 368, 746, 1288, 2220, 3536, 4964, 6904, 9536, 12112, 15630, 20592, 24588, 29632, 37472, 43296, 50492, 61456, 68724, 79560, 95404, 104352, 118226, 137392, 148636, 167920, 191904, 204712
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (1/2)*(theta_2^2*theta_3^6).
Expansion of q^(-1/2) * 2 * (eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2))^4 in powers of q. - Michael Somos, Jul 24 2017
|
|
MATHEMATICA
|
terms = 30; List @@ Normal[(1/2)*EllipticTheta[2, 0, z]^2*EllipticTheta[3, 0, z]^6 + O[z]^terms] /. z -> 1 (* Jean-François Alcover, Jul 06 2017 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 EllipticTheta[ 3, 0, x]^4 / (8 Sqrt[x]), {x, 0, n}]; (* Michael Somos, Jul 24 2017 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( (eta( x^2 + A)^7 / (eta( x + A)^3 * eta( x^4 + A)^2))^4, n))}; /* Michael Somos, Jul 24 2017 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|