login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045820
Theta series of D8 lattice with respect to midpoint of edge.
3
2, 24, 124, 368, 746, 1288, 2220, 3536, 4964, 6904, 9536, 12112, 15630, 20592, 24588, 29632, 37472, 43296, 50492, 61456, 68724, 79560, 95404, 104352, 118226, 137392, 148636, 167920, 191904, 204712
OFFSET
0,1
LINKS
FORMULA
G.f.: (1/2)*(theta_2^2*theta_3^6).
Expansion of q^(-1/2) * 2 * (eta(q^2)^7 / (eta(q)^3 * eta(q^4)^2))^4 in powers of q. - Michael Somos, Jul 24 2017
MATHEMATICA
terms = 30; List @@ Normal[(1/2)*EllipticTheta[2, 0, z]^2*EllipticTheta[3, 0, z]^6 + O[z]^terms] /. z -> 1 (* Jean-François Alcover, Jul 06 2017 *)
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x^(1/2)]^4 EllipticTheta[ 3, 0, x]^4 / (8 Sqrt[x]), {x, 0, n}]; (* Michael Somos, Jul 24 2017 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); 2 * polcoeff( (eta( x^2 + A)^7 / (eta( x + A)^3 * eta( x^4 + A)^2))^4, n))}; /* Michael Somos, Jul 24 2017 */
CROSSREFS
Cf. A045822.
Sequence in context: A179824 A034310 A060817 * A098455 A261475 A078994
KEYWORD
nonn
STATUS
approved