login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045819
Theta series of E_8 lattice with respect to midpoint of edge.
1
2, 56, 252, 688, 1514, 2664, 4396, 7056, 9828, 13720, 19264, 24336, 31502, 40880, 48780, 59584, 74592, 86688, 101308, 123088, 137844, 159016, 190764, 207648, 235986, 275184, 297756, 335664, 384160, 410760, 453964, 520816, 553896, 601528
OFFSET
0,1
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, 1999, p. 123.
LINKS
Gabriele Nebe and N. J. A. Sloane, Home page for this lattice.
FORMULA
G.f.: (1/2)*(theta_2^2*theta_3^6 + theta_2^6*theta_3^2).
a(n) = 2*sigma_3(2n+1). - Benoit Cloitre, Apr 12 2003
a(n) = 2 * A045823(n). - Alois P. Heinz, Mar 21 2021
Sum_{k=0..n} a(k) ~ (15*zeta(4)/4) * n^4. - Amiram Eldar, Dec 12 2023
EXAMPLE
2*q^(1/2) + 56*q^(3/2) + 252*q^(5/2) + ...
MATHEMATICA
a[n_] := 2 DivisorSigma[3, 2 n + 1]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Jul 06 2017, after Benoit Cloitre *)
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Benoit Cloitre, Apr 12 2003
STATUS
approved