login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerical distance between m-th and (n+m)-th circles in a loxodromic sequence of circles in which each 4 consecutive circles touch.
1

%I #29 Sep 13 2018 09:51:02

%S -1,1,1,1,7,17,49,145,415,1201,3473,10033,28999,83809,242209,700001,

%T 2023039,5846689,16897249,48833953,141132743,407881201,1178798545,

%U 3406791025,9845808799,28454915537,82236232177,237667122001

%N Numerical distance between m-th and (n+m)-th circles in a loxodromic sequence of circles in which each 4 consecutive circles touch.

%D Coxeter, H. S. M. "Numerical distances among the circles in a loxodromic sequence." Nieuw Archief voor Wiskunde 16 (1998): 1-10. (Note the word "circles" in the title!)

%H Muniru A Asiru, <a href="/A045821/b045821.txt">Table of n, a(n) for n = 0..500</a>

%H H. S. M. Coxeter, <a href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002022109">Loxodromic sequences of tangent spheres</a>, Aequationes Mathematicae, 1.1-2 (1968): 104-121. See p. 112.

%H H. S. M. Coxeter, <a href="https://doi.org/10.1007/BF03024413">Numerical distances among the spheres in a loxodromic sequence</a>, Math. Intell. 19(4) 1997 pp. 41-47. (Note the word "spheres" in the title!) See page 45.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,2,2,-1).

%F a(n) = 2(a(n-1)+a(n-2)+a(n-3))-a(n-4).

%F a(n) = Sum{v=0 to [n/2]} binomial(n, 2v)*F(n-v-2) where F(m) is the m-th Fibonacci number.

%F G.f.: -(x^3-x^2-3*x+1) / (x^4-2*x^3-2*x^2-2*x+1). - _Colin Barker_, Sep 23 2013

%F Lim_{n -> inf} a(n)/a(n-1) = A318605. - _A.H.M. Smeets_, Sep 12 2018

%p with(combinat); F:=fibonacci;

%p f:=n->add(F(n-i)*binomial(n,2*(i-2)), i=2..n-1);

%p [seq(f(n),n=3..32)]; # Produces the sequence from a(3) onwards - _N. J. A. Sloane_, Sep 03 2018

%t CoefficientList[Series[-(x^3-x^2-3*x+1)/(x^4-2*x^3-2*x^2-2*x+1), {x, 0, 30}], x] (* _Stefano Spezia_, Sep 12 2018 *)

%o (PARI) Vec(-(x^3-x^2-3*x+1)/(x^4-2*x^3-2*x^2-2*x+1) + O(x^100)) \\ _Colin Barker_, Sep 23 2013

%o (GAP) a:=[-1,1,1,1];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]+2*a[n-3]-a[n-4]; od; a; # _Muniru A Asiru_, Sep 12 2018

%Y Cf. A027674.

%K sign,easy

%O 0,5

%A _Colin Mallows_

%E Reference and formulas from _Floor van Lamoen_