login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043569
Numbers whose base-2 representation has exactly 2 runs.
9
2, 4, 6, 8, 12, 14, 16, 24, 28, 30, 32, 48, 56, 60, 62, 64, 96, 112, 120, 124, 126, 128, 192, 224, 240, 248, 252, 254, 256, 384, 448, 480, 496, 504, 508, 510, 512, 768, 896, 960, 992, 1008, 1016, 1020, 1022, 1024, 1536, 1792, 1920, 1984, 2016, 2032, 2040, 2044
OFFSET
1,1
COMMENTS
Numbers whose binary representation contains the bit string "10" but not "01". Subsequence of A062289; set difference A062289 minus A101082. - Rick L. Shepherd, Nov 29 2004
Mersenne numbers (A000225) times powers of 2 (A000079). Therefore this sequence contains the even perfect numbers (A000396). - Alonso del Arte, Apr 21 2006
FORMULA
This sequence is twice A023758. - Franklin T. Adams-Watters, Apr 21 2006
Sum_{n>=1} 1/a(n) = A065442. - Amiram Eldar, Feb 20 2022
A007814(a(n)) = A004736(n). - Lorenzo Sauras Altuzarra, Feb 01 2023
MAPLE
a:=proc(n) local nn, nd: nn:=convert(n, base, 2): nd:={seq(nn[j]-nn[j-1], j=2..nops(nn))}: if n=2 then 2 elif nd={0, 1} then n else fi end: seq(a(n), n=1..2100); # Emeric Deutsch, Apr 21 2006
MATHEMATICA
Take[Sort[Flatten[Table[(2^x - 1)*(2^y), {x, 32}, {y, 32}]]], 54] (* Alonso del Arte, Apr 21 2006 *)
Select[Range[2500], Length[Split[IntegerDigits[#, 2]]]==2&] (* or *) Select[Range[2500], SequenceCount[IntegerDigits[#, 2], {1, 0}]>0 && SequenceCount[ IntegerDigits[#, 2], {0, 1}]==0&] (* Harvey P. Dale, Oct 04 2024 *)
PROG
(Python)
def ok(n): b = bin(n)[2:]; return "10" in b and "01" not in b
print([m for m in range(2045) if ok(m)]) # Michael S. Branicky, Feb 04 2021
(Python)
def a_next(a_n): t = a_n >> 1; return (a_n | t) + (t & 1)
a_n = 2; a = []
for i in range(54): a.append(a_n); a_n = a_next(a_n) # Falk Hüffner, Feb 19 2022
CROSSREFS
KEYWORD
nonn,base
EXTENSIONS
More terms from Rick L. Shepherd, Nov 29 2004
STATUS
approved