login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A042741
Denominators of continued fraction convergents to sqrt(901).
3
1, 60, 3601, 216120, 12970801, 778464180, 46720821601, 2804027760240, 168288386436001, 10100107213920300, 606174721221654001, 36380583380513160360, 2183441177552011275601, 131042851236501189696420, 7864754515367623393060801, 472016313773293904773344480
OFFSET
0,2
COMMENTS
From Michael A. Allen, Jan 22 2024: (Start)
Also called the 60-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 60 kinds of squares available. (End)
LINKS
FORMULA
a(n) = F(n, 60), the n-th Fibonacci polynomial evaluated at x=60. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 60*a(n-1) + a(n-2) for n>1; a(0)=1, a(1)=60.
G.f.: 1/(1 - 60*x - x^2). (End)
E.g.f.: exp(30*x)*cosh(sqrt(901)*x) + 30*exp(30*x)*sinh(sqrt(901)*x)/sqrt(901). - Stefano Spezia, May 14 2023
MATHEMATICA
Denominator[Convergents[Sqrt[901], 30]] (* or *) LinearRecurrence[{60, 1}, {1, 60}, 30] (* Harvey P. Dale, Sep 09 2012 *)
PROG
(Magma) I:=[1, 60]; [n le 2 select I[n] else 60*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 28 2014
CROSSREFS
Row n=60 of A073133, A172236 and A352361 and column k=60 of A157103.
Sequence in context: A267930 A267977 A159991 * A166772 A293091 A074076
KEYWORD
nonn,frac,easy
EXTENSIONS
Additional term from Colin Barker, Dec 22 2013
STATUS
approved