OFFSET
0,2
COMMENTS
From Michael A. Allen, Jan 22 2024: (Start)
Also called the 60-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 60 kinds of squares available. (End)
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
Michael A. Allen and Kenneth Edwards, Fence tiling derived identities involving the metallonacci numbers squared or cubed, Fib. Q. 60:5 (2022) 5-17.
Tanya Khovanova, Recursive Sequences
Index entries for linear recurrences with constant coefficients, signature (60,1).
FORMULA
a(n) = F(n, 60), the n-th Fibonacci polynomial evaluated at x=60. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 60*a(n-1) + a(n-2) for n>1; a(0)=1, a(1)=60.
G.f.: 1/(1 - 60*x - x^2). (End)
E.g.f.: exp(30*x)*cosh(sqrt(901)*x) + 30*exp(30*x)*sinh(sqrt(901)*x)/sqrt(901). - Stefano Spezia, May 14 2023
MATHEMATICA
Denominator[Convergents[Sqrt[901], 30]] (* or *) LinearRecurrence[{60, 1}, {1, 60}, 30] (* Harvey P. Dale, Sep 09 2012 *)
PROG
(Magma) I:=[1, 60]; [n le 2 select I[n] else 60*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Jan 28 2014
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
EXTENSIONS
Additional term from Colin Barker, Dec 22 2013
STATUS
approved