|
|
A042201
|
|
Denominators of continued fraction convergents to sqrt(626).
|
|
3
|
|
|
1, 50, 2501, 125100, 6257501, 313000150, 15656265001, 783126250200, 39171968775001, 1959381565000250, 98008250218787501, 4902371892504375300, 245216602875437552501, 12265732515664382000350, 613531842386094537570001, 30688857851820391260500400
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Also called the 50-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 50 kinds of squares available. (End)
|
|
LINKS
|
|
|
FORMULA
|
a(n) = F(n, 50), the n-th Fibonacci polynomial evaluated at x=50. - T. D. Noe, Jan 19 2006
a(n) = 50*a(n-1) + a(n-2) for n > 1, a(0)=1, a(1)=50.
G.f.: 1/(1 - 50*x - x^2). (End)
|
|
MATHEMATICA
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|