login
A041685
Denominators of continued fraction convergents to sqrt(362).
3
1, 38, 1445, 54948, 2089469, 79454770, 3021370729, 114891542472, 4368899984665, 166133090959742, 6317426356454861, 240228334636244460, 9134994142533744341, 347370005750918529418, 13209195212677437862225, 502296788087493557293968
OFFSET
0,2
COMMENTS
From Michael A. Allen, Jul 13 2023: (Start)
Also called the 38-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 38 kinds of squares available. (End)
LINKS
FORMULA
a(n) = F(n, 38), the n-th Fibonacci polynomial evaluated at x=38. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 23 2008: (Start)
a(n) = 38*a(n-1) + a(n-2), n > 1; a(0)=1, a(1)=38.
G.f.: 1/(1-38*x-x^2). (End)
MATHEMATICA
Denominator[Convergents[Sqrt[362], 30]] (* Vincenzo Librandi, Dec 22 2013 *)
LinearRecurrence[{38, 1}, {1, 38}, 30] (* Harvey P. Dale, May 23 2017 *)
CROSSREFS
Row n=38 of A073133, A172236 and A352361 and column k=38 of A157103.
Sequence in context: A239364 A078987 A009982 * A221385 A158766 A217224
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Nov 21 2013
STATUS
approved