login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041115
Denominators of continued fraction convergents to sqrt(66).
3
1, 8, 129, 1040, 16769, 135192, 2179841, 17573920, 283362561, 2284474408, 36834953089, 296964099120, 4788260539009, 38603048411192, 622437035118081, 5018099329355840, 80912026304811521, 652314309767848008, 10517940982590379649
OFFSET
0,2
FORMULA
a(n) = 16*a(n-1) + a(n-2) for n >= 2 even and a(n) = 8*a(n-1) + a(n-2) for n >= 2 odd. - Nathaniel Johnston, Jun 26 2011
From Colin Barker, Feb 28 2013: (Start)
a(n) = 130*a(n-2) - a(n-4).
G.f.: -(x^2 - 8*x - 1) / (x^4 - 130*x^2 + 1). (End)
a(2n) = A041495(2n), a(2n+1) = A041495(2n+1)*2. - M. F. Hasler, Feb 23 2020
MAPLE
a := proc(n) option remember: if(n<=1)then return (n+1)^3: fi: if(n mod 2 = 0)then return 16*a(n-1) + a(n-2): else return 8*a(n-1) + a(n-2): fi: end: seq(a(n), n=0..20); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[66], n]]], {n, 1, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 26 2011 *)
CoefficientList[Series[(1 + 8 x - x^2)/(x^4 - 130 x^2 + 1), {x, 0, 30}], x] (* Vincenzo Librandi, Dec 11 2013 *)
PROG
(Magma) I:=[1, 8, 129, 1040]; [n le 4 select I[n] else 130*Self(n-2)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 11 2013
CROSSREFS
Sequence in context: A104997 A265097 A027951 * A348546 A041112 A348207
KEYWORD
nonn,frac,easy
STATUS
approved