login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041112
Numerators of continued fraction convergents to sqrt(65).
3
8, 129, 2072, 33281, 534568, 8586369, 137916472, 2215249921, 35581915208, 571525893249, 9179996207192, 147451465208321, 2368403439540328, 38041906497853569, 611038907405197432, 9814664424981012481, 157645669707101397128, 2532145379738603366529, 40671971745524755261592
OFFSET
0,1
FORMULA
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 16*a(n-1) + a(n-2), with n > 1, a(0) = 8, a(1) = 129.
G.f.: (8 + x)/(1 - 16*x - x^2). (End)
E.g.f.: exp(8*x)*(8*cosh(sqrt(65)*x) + sqrt(65)*sinh(sqrt(65)*x)). - Stefano Spezia, Oct 28 2022
MATHEMATICA
CoefficientList[Series[(8 + x)/(1 - 16 x - x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 29 2013 *)
Numerator[Convergents[Sqrt[65], 20]] (* or *) LinearRecurrence[{16, 1}, {8, 129}, 20] (* Harvey P. Dale, Nov 12 2013 *)
CROSSREFS
Sequence in context: A027951 A041115 A348546 * A348207 A356914 A364986
KEYWORD
nonn,frac,easy
EXTENSIONS
More terms from Colin Barker, Nov 05 2013
STATUS
approved