login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041111
Denominators of continued fraction convergents to sqrt(63).
5
1, 1, 15, 16, 239, 255, 3809, 4064, 60705, 64769, 967471, 1032240, 15418831, 16451071, 245733825, 262184896, 3916322369, 4178507265, 62415424079, 66593931344, 994730462895, 1061324394239, 15853271982241
OFFSET
0,3
COMMENTS
The following remarks assume an offset of 1. This is the sequence of Lehmer numbers U_n(sqrt(R),Q) for the parameters R = 14 and Q = -1; it is a strong divisibility sequence, that is, gcd(a(n),a(m)) = a(gcd(n,m)) for all positive integers n and m. Consequently, this is a divisibility sequence: if n divides m then a(n) divides a(m). - Peter Bala, May 28 2014
FORMULA
From Colin Barker, Jul 15 2012: (Start)
a(n) = 16*a(n-2) - a(n-4).
G.f.: (1+x-x^2)/(1-16*x^2+x^4). (End)
From Peter Bala, May 28 2014: (Start)
The following remarks assume an offset of 1.
Let alpha = ( sqrt(14) + sqrt(18) )/2 and beta = ( sqrt(14) - sqrt(18) )/2 be the roots of the equation x^2 - sqrt(14)*x - 1 = 0. Then a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, while a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even. a(n) = Product_{k = 1..floor((n-1)/2)} ( 14 + 4*cos^2(k*Pi/n) ). Recurrence equations: a(0) = 0, a(1) = 1 and for n >= 1, a(2*n) = a(2*n - 1) + a(2*n - 2) and a(2*n + 1) = 14*a(2*n) + a(2*n - 1). (End)
MATHEMATICA
Denominator/@Convergents[Sqrt[63], 30] (* Harvey P. Dale, May 18 2011 *)
CoefficientList[Series[(1 + x - x^2)/(1 - 16 x^2 + x^4), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 24 2013 *)
CROSSREFS
KEYWORD
nonn,cofr,frac,easy
STATUS
approved