login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A041114
Numerators of continued fraction convergents to sqrt(66).
2
8, 65, 1048, 8449, 136232, 1098305, 17709112, 142771201, 2302048328, 18559157825, 299248573528, 2412547746049, 38900012510312, 313612647828545, 5056702377767032, 40767231669964801, 657332409097203848, 5299426504447595585
OFFSET
0,1
FORMULA
a(n) = 16*a(n-1) + a(n-2) for n>=2 even and a(n) = 8*a(n-1) + a(n-2) for n >= 2 odd. - Nathaniel Johnston, Jun 26 2011
From Colin Barker, Feb 28 2013: (Start)
a(n) = 130*a(n-2) - a(n-4).
G.f.: -(x^3-8*x^2-65*x-8) / (x^4-130*x^2+1). (End)
MAPLE
a := proc(n) option remember: if(n<=1)then return n+8^(n+1): fi: if(n mod 2 = 0)then return 16*a(n-1) + a(n-2): else return 8*a(n-1) + a(n-2): fi: end: seq(a(n), n=0..17); # Nathaniel Johnston, Jun 26 2011
MATHEMATICA
Numerator[Convergents[Sqrt[66], 30]] (* or *) LinearRecurrence[{0, 130, 0, -1}, {8, 65, 1048, 8449}, 30] (* Harvey P. Dale, Jan 31 2023 *)
CROSSREFS
Cf. A041115.
Sequence in context: A189431 A024105 A302316 * A360847 A320990 A015496
KEYWORD
nonn,cofr,frac,easy
STATUS
approved