login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037959
a(n) = n^2*(n+1)*(n+2)!/48.
2
6, 90, 1200, 15750, 211680, 2963520, 43545600, 673596000, 10977120000, 188367379200, 3399953356800, 64457449056000, 1281520880640000, 26676557107200000, 580481882652672000, 13183287756807168000
OFFSET
2,1
REFERENCES
Identity (1.19)/(n+3) in H. W. Gould, Combinatorial Identities, Morgantown, 1972, page 3.
LINKS
FORMULA
(n-1)^2*a(n) = n*(n+2)*(n+1)*a(n-1). - R. J. Mathar, Jul 26 2015
From G. C. Greubel, Jun 20 2022: (Start)
a(n) = (1/(n+3))*Sum_{j=0..n} (-1)^(n+j)*binomial(n,j)*j^(n+3).
a(n) = n!*StirlingS2(n+3, n)/(n+3).
a(n) = A037961(n)/(n+3).
a(n) = A131689(n+3, n).
a(n) = A019538(n+3, n).
E.g.f.: x*(1 + 6*x + 3*x^2)/(4*(1-x)^6). (End)
MATHEMATICA
Table[(n+2)!n^2(n+1)/48, {n, 2, 20}] (* Harvey P. Dale, Jul 29 2021 *)
PROG
(Magma) [Factorial(n)*StirlingSecond(n+3, n)/(n+3): n in [2..30]]; // G. C. Greubel, Jun 20 2022
(SageMath) [factorial(n)*stirling_number2(n+3, n)/(n+3) for n in (2..30)] # G. C. Greubel, Jun 20 2022
KEYWORD
nonn
STATUS
approved