login
A037091
Lexicographically earliest strictly increasing base 3 autovarious sequence: a(n) = number of distinct a(k) mod 3^n (written in base 3).
2
1, 2, 11, 12, 101, 1001, 1002, 1011, 1012, 1101, 10001, 10002, 10011, 10012, 10101, 11001, 11002, 11011, 11012, 11101, 20001, 20002, 20011, 20012, 20101, 21001, 21002, 21011, 100001, 1000001, 1000002, 10000001, 100000001, 100000002
OFFSET
0,2
COMMENTS
The first a(n) elements include all a(n) residues mod 3^n.
LINKS
PROG
(Python)
a, m, n, i, b = [1, 2, 4], 1, 1, 0, 3
while len(a) <= 100:
while (a[-1]==a[-2] or not all(len(set([x % (b ** j) for x in a])) <= a[j] for j in range(1, len(a)-1))):
i += 1
if (i == len(a)-1):i, m = 0, m+1
a[-1] = (m*(b**n))+a[i]
if (len(a) in a): m, n, i = 1, n+1, 0; a.append((b**n)+1)
else: a.append(a[-1])
a.pop();
def tern(n):
if n == 0: return ""
return tern(n // 3) + str(n % 3)
for k in a: print(tern(k)) # Dominic McCarty, Jan 29 2025
CROSSREFS
Cf. A037090.
Sequence in context: A034118 A140148 A117547 * A289675 A127303 A378841
KEYWORD
nonn,base
STATUS
approved