login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A037088
Triangle read by rows: T(n,k) is number of numbers x, 2^n <= x < 2^(n+1), with k prime factors (counted with multiplicity).
3
2, 2, 2, 2, 4, 2, 5, 4, 5, 2, 7, 12, 6, 5, 2, 13, 20, 17, 7, 5, 2, 23, 40, 30, 20, 8, 5, 2, 43, 75, 65, 37, 21, 8, 5, 2, 75, 147, 131, 81, 41, 22, 8, 5, 2, 137, 285, 257, 173, 91, 44, 22, 8, 5, 2, 255, 535, 536, 344, 199, 96, 46, 22, 8, 5, 2, 464, 1062, 1033, 736, 403, 215, 99, 47
OFFSET
1,1
COMMENTS
Sequence A092097 gives the limiting behavior at the end of the rows. - T. D. Noe, Feb 22 2008
EXAMPLE
The triangular array begins 2; 2,2; 2,4,2; 5,4,5,2; 7,12,6,5,2; ...
a(7) = 5 because the 3-almost primes between 16 and 32 are (18,20,27,28,30).
MATHEMATICA
t[n_, k_] := Count[Range[2^n, 2^(n+1)-1], x_ /; Total[FactorInteger[x][[All, 2]]] == k]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 07 2013 *)
CROSSREFS
A001222 counts factors of n. A000040, A001358, A014612-A014614 are special cases. A036378 and A025488 are applications of binary order A029837. Leading diagonal is essentially A036378 and has partial sums A007053.
Sequence in context: A089818 A067025 A049047 * A260722 A153436 A354359
KEYWORD
nonn,tabl,nice
AUTHOR
EXTENSIONS
More terms from Naohiro Nomoto, Jun 18 2001
STATUS
approved