login
A037090
Lexicographically earliest strictly increasing base-2 autovarious sequence: a(n) = number of distinct a(k) mod 2^n (written in base 2).
2
1, 10, 11, 101, 110, 1001, 10001, 10010, 10011, 100001, 100010, 100011, 100101, 100110, 101001, 110001, 110010, 1000001, 10000001, 100000001, 100000010, 100000011, 100000101, 100000110, 100001001, 100010001, 100010010, 100010011
OFFSET
0,2
COMMENTS
The first a(n) elements include all a(n) residues mod 2^n.
LINKS
PROG
(Python)
a, m, n, i, b = [1, 2, 3, 5], 1, 2, 0, 2
while len(a) <= 100:
while (a[-1]==a[-2] or not all(len(set([x % (b ** j) for x in a])) <= a[j] for j in range(1, len(a)-1))):
i += 1
if (i == len(a)-1):i, m = 0, m+1
a[-1] = (m*(b**n))+a[i]
if (len(a) in a): m, n, i = 1, n+1, 0; a.append((b**n)+1)
else: a.append(a[-1])
a.pop();
for k in a: print(bin(k)[2:]) # Dominic McCarty, Jan 29 2025
CROSSREFS
Cf. A037091.
Sequence in context: A205598 A350312 A368804 * A171676 A118240 A157845
KEYWORD
nonn,base
STATUS
approved