|
|
A037094
|
|
"Sloping binary representation" of Lucas numbers (A000032), slope = +1.
|
|
3
|
|
|
0, 7, 29, 114, 971, 3695, 14684, 58639, 496705, 1892294, 7518347, 30023387, 258775984, 966632223, 3848859285, 32551146626, 123937019667, 492763242871, 1967451434524, 16666715013959, 63494909959113
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
|
|
FORMULA
|
a(n) := Sum(bit_n(A000032(n+i), i)*(2^i), i=0..inf) [ bit_n := (x, n) -> `mod`(floor(x/(2^n)), 2); ]
In practice, 3n (2n?) can be used as an upper limit instead of infinity.
|
|
EXAMPLE
|
When Lucas numbers (A000032) are written in binary, under each other as:
0000010 (2)
0000001 (1)
0000011 (3)
0000100 (4)
0000111 (7)
0001011 (11)
0010010 (18)
0011101 (29)
0101111 (47)
1001100 (76)
and one starts collecting their bits from column-0 to SW-direction (from the least to the most significant end), one gets 000... (0), ...00111 (7), ...011101 (29), ...001110010 (114), etc. (See A102370 for similar transformation done on nonnegative integers).
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|