OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Eric Weisstein's World of Mathematics, Rule 158
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
Index entries for linear recurrences with constant coefficients, signature (0,17,0,-16).
FORMULA
a(n) = (1/30)*(-16+(-4)^n-10*(-1)^n+55*4^n).
From Colin Barker, Oct 08 2015: (Start)
a(n) = 17*a(n-2) - 16*a(n-4) for n>3.
G.f.: -(4*x^3-12*x^2-7*x-1) / ((x-1)*(x+1)*(4*x-1)*(4*x+1)).
(End)
a(n) = floor(28*4^n/15) for even n>=0; a(n) = floor(27*4^n/15) for odd n. - Karl V. Keller, Jr., Oct 09 2020
EXAMPLE
1;
1, 1, 1;
1, 1, 1, 0, 1;
1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 0, 1, 1, 1, 0, 1;
...
From Michael De Vlieger, Oct 08 2015: (Start)
First 8 rows, representing ON cells as "1", OFF cells within the bounds
of ON cells as "0", interpreted as a binary number at left, the decimal
equivalent appearing at right:
1 = 1
111 = 7
1 1101 = 29
111 0011 = 115
1 1101 1101 = 477
111 0011 0011 = 1843
1 1101 1101 1101 = 7645
111 0011 0011 0011 = 29491
11101 1101 1101 1101 = 122333
(End)
MATHEMATICA
Table[(-16 + (-4)^n - 10 (-1)^n + 55*4^n)/30, {n, 0, 24}] (* or *)
clip[lst_] := Block[{p = Flatten@ Position[lst, 1]}, Take[lst, {Min@ p, Max@ p}]]; FromDigits[#, 2] & /@ Map[clip, CellularAutomaton[158, {{1}, 0}, 24]] (* Michael De Vlieger, Oct 08 2015 *)
PROG
(PARI) Vec(-(4*x^3-12*x^2-7*x-1)/((x-1)*(x+1)*(4*x-1)*(4*x+1)) + O(x^30)) \\ Colin Barker, Oct 08 2015
(PARI) vector(100, n, n--; (1/30)*(-16+(-4)^n-10*(-1)^n+55*4^n)) \\ Altug Alkan, Oct 08 2015
(Python) print([27*4**n//15 if n%2 else 28*4**n//15 for n in range(50)]) # Karl V. Keller, Jr., May 07 2022
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Eric W. Weisstein, Apr 13 2006
STATUS
approved