login
A036214
Bit-reversing masks for 2*n bits.
3
0, 18, 4740, 17966088, 1136090292240, 1171507928472027168, 19496308761789043518734400, 5212738348288268369644435170918528, 22344471816287582119092726913736555148345600, 1533995044405866391626076022957811770200509055768723968
OFFSET
0,2
REFERENCES
R. Schroeppel: DECsystem-10/20 Processor Reference Manual AA-H391A-TK, Chapter 2, User Operations, section 2.15: Programming Examples: Reversing Order of Digits.
FORMULA
a(n) = 2^n * ( 2^(2*n^2+3*n+1) + 2^(2*n^2+2*n) - 2^(3*n+1) - 1 ) / (2^(2*n+1) - 1).
log(a(n)) ~ log(4) * n ^ 2. - Bill McEachen, Jul 13 2024
MATHEMATICA
Table[2^n*(2^(2*n^2 + 3*n + 1) + 2^(2*n^2 + 2*n) - 2^(3*n + 1) - 1)/(2^(2*n + 1) - 1), {n, 0, 10}] (* Wesley Ivan Hurt, Jun 10 2024 *)
PROG
(PARI) A036214(n) = 2^n * ( 2^(2*n^2+3*n+1) + 2^(2*n^2+2*n) - 2^(3*n+1) - 1 ) / (2^(2*n+1) - 1); \\ Antti Karttunen, Jan 14 2024
CROSSREFS
Sequence in context: A263589 A008994 A346209 * A188799 A058976 A319942
KEYWORD
nonn,nice
STATUS
approved