The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346209 Number of n X n matrices over GF(3) with no eigenvalues in GF(3), i.e., neither 0 nor 1 nor 2 is an eigenvalue. 1
 1, 0, 18, 3456, 7619508, 149200289280, 26394940582090344, 42062797470468915399168, 603463180651533072058654437264, 77927374189849689541269666899007713280, 90570450400853976077932766909301405665963077152 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Equivalently, a(n) is the number of n X n matrices over GF(3) whose characteristic polynomial has no linear factors. LINKS Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1. FORMULA Sum_{n>=0} a(n)*x^n/A053290(n) = Product_{d>=2} (Product_{r>=1} 1/(1-x^d/3^(r*d)))^A027376(d). MATHEMATICA nn = 10; q = 3; \[Nu] = Table[1/n Sum[MoebiusMu[n/d] q^d, {d, Divisors[n]}], {n, 1, nn}]; Table[Product[q^n - q^i, {i, 0, n - 1}], {n, 0, nn}] CoefficientList[Series[Product[Product[1/(1 - u^d/q^(r d)), {r, 1, \[Infinity]}]^\[Nu][[d]], {d, 2, nn}], {u, 0, nn}], u] CROSSREFS Cf. A002820, A051680, A027376, A053290. Sequence in context: A001325 A263589 A008994 * A036214 A188799 A058976 Adjacent sequences: A346206 A346207 A346208 * A346210 A346211 A346212 KEYWORD nonn AUTHOR Geoffrey Critzer, Jul 10 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 8 04:10 EST 2023. Contains 360134 sequences. (Running on oeis4.)