login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A036213
Duplicating binary multipliers; i.e., n+1 1-bits placed 2n bits from each other.
3
1, 5, 273, 266305, 4311810305, 1127000493261825, 4723519685917965029377, 316931994050834867150735294465, 340287559297026369749534115703797383169, 5846028850153881119687907085637645039610972340225, 1606939576755992644461949257743820820735113393327883823349761
OFFSET
0,2
COMMENTS
A 2n-bit binary number can be reversed by multiplying it first by 2 and the n-th element of this sequence, masking it (bit and) with n-th element of A036214 and taking remainder of the division by (2^(2n + 2) - 1).
REFERENCES
R. Schroeppel: DECsystem-10/20 Processor Reference Manual AA-H391A-TK, Chapter 2, User Operations, section 2.15: Programming Examples: Reversing Order of Digits.
LINKS
M. Beeler, R. W. Gosper, and R. Schroeppel, A Bit-Reversing Example in HAKMEM (Item 167).
FORMULA
a(0) = 1, a(n) = (2^(2*n^2+2*n)-1) / (2^(2*n)-1).
MATHEMATICA
Join[{1}, Table[((2^((2 (n^2)) + 2 (n))) - 1) / ((2^(2 n)) - 1), {n, 20}]] (* Vincenzo Librandi, Aug 03 2017 *)
PROG
(PARI) a(n) = if (n==0, 1, ((2^((2*(n^2))+2*(n)))-1)/((2^(2*n))-1)) \\ Michel Marcus, Jun 07 2013
(Magma) [1] cat [((2^((2*(n^2))+2*(n)))-1)/((2^(2*n))-1): n in [1..10]]; // Vincenzo Librandi, Aug 03 2017
CROSSREFS
Sequence in context: A326321 A234324 A066210 * A262548 A112901 A213958
KEYWORD
nonn,base
STATUS
approved