login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Duplicating binary multipliers; i.e., n+1 1-bits placed 2n bits from each other.
3

%I #34 Jan 14 2024 04:36:48

%S 1,5,273,266305,4311810305,1127000493261825,4723519685917965029377,

%T 316931994050834867150735294465,

%U 340287559297026369749534115703797383169,5846028850153881119687907085637645039610972340225,1606939576755992644461949257743820820735113393327883823349761

%N Duplicating binary multipliers; i.e., n+1 1-bits placed 2n bits from each other.

%C A 2n-bit binary number can be reversed by multiplying it first by 2 and the n-th element of this sequence, masking it (bit and) with n-th element of A036214 and taking remainder of the division by (2^(2n + 2) - 1).

%D R. Schroeppel: DECsystem-10/20 Processor Reference Manual AA-H391A-TK, Chapter 2, User Operations, section 2.15: Programming Examples: Reversing Order of Digits.

%H Vincenzo Librandi, <a href="/A036213/b036213.txt">Table of n, a(n) for n = 0..40</a>

%H M. Beeler, R. W. Gosper, and R. Schroeppel, <a href="http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item167">A Bit-Reversing Example in HAKMEM (Item 167)</a>.

%H A. Karttunen, <a href="/A036213/a036213.txt">A Simple C program Demonstrating Bit Reversals</a>.

%F a(0) = 1, a(n) = (2^(2*n^2+2*n)-1) / (2^(2*n)-1).

%t Join[{1}, Table[((2^((2 (n^2)) + 2 (n))) - 1) / ((2^(2 n)) - 1), {n, 20}]] (* _Vincenzo Librandi_, Aug 03 2017 *)

%o (PARI) a(n) = if (n==0, 1, ((2^((2*(n^2))+2*(n)))-1)/((2^(2*n))-1)) \\ _Michel Marcus_, Jun 07 2013

%o (Magma) [1] cat [((2^((2*(n^2))+2*(n)))-1)/((2^(2*n))-1): n in [1..10]]; // _Vincenzo Librandi_, Aug 03 2017

%K nonn,base

%O 0,2

%A _Antti Karttunen_