login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035532
a(n) = 2*phi(n) if n composite, or 2*phi(n) - (A000120(n)-1) if n prime, where phi = A000010, Euler's totient function, and a(1) = 1.
2
1, 2, 3, 4, 7, 4, 10, 8, 12, 8, 18, 8, 22, 12, 16, 16, 31, 12, 34, 16, 24, 20, 41, 16, 40, 24, 36, 24, 53, 16, 56, 32, 40, 32, 48, 24, 70, 36, 48, 32, 78, 24, 81, 40, 48, 44, 88, 32, 84, 40, 64, 48, 101, 36, 80, 48, 72, 56, 112, 32, 116, 60, 72, 64, 96, 40, 130, 64, 88, 48, 137
OFFSET
1,2
LINKS
FORMULA
a(n) = 2*A000010(n) - A010051(n)*A048881(n-1), for n > 1. - Reinhard Zumkeller, Feb 04 2015, edited by M. F. Hasler, Mar 10 2018
For many values of n, the inverse Möbius transform of this sequence (g.f.: Sum a(n)*x^n/(1-x^n)) equals A005187, but this is not the case for composite n such that A297115(n) <> 0. The equality does hold for A297111 instead. - Antti Karttunen & M. F. Hasler, Mar 10 2018
MATHEMATICA
Insert[Table[If[PrimeQ[n], 2*EulerPhi[n] - DigitCount[n, 2][[1]] + 1, 2*EulerPhi[n]], {n, 2, 100}], 1, 1] (* Stefan Steinerberger, Apr 11 2006 *)
PROG
(Haskell)
a035532 1 = 1
a035532 n = if a010051' n == 0 then phi2 else phi2 - a000120 n + 1
where phi2 = 2 * a000010 n
-- Reinhard Zumkeller, Feb 04 2015
(PARI) A035532(n)=2*eulerphi(n)-if(isprime(n), hammingweight(n)-1, n==1) \\ M. F. Hasler, Mar 10 2018
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from James A. Sellers
Definition amended for a(1) = 1 by M. F. Hasler, Mar 10 2018
STATUS
approved