login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*phi(n) if n composite, or 2*phi(n) - (A000120(n)-1) if n prime, where phi = A000010, Euler's totient function, and a(1) = 1.
2

%I #44 Sep 06 2023 21:13:38

%S 1,2,3,4,7,4,10,8,12,8,18,8,22,12,16,16,31,12,34,16,24,20,41,16,40,24,

%T 36,24,53,16,56,32,40,32,48,24,70,36,48,32,78,24,81,40,48,44,88,32,84,

%U 40,64,48,101,36,80,48,72,56,112,32,116,60,72,64,96,40,130,64,88,48,137

%N a(n) = 2*phi(n) if n composite, or 2*phi(n) - (A000120(n)-1) if n prime, where phi = A000010, Euler's totient function, and a(1) = 1.

%H Reinhard Zumkeller, <a href="/A035532/b035532.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = 2*A000010(n) - A010051(n)*A048881(n-1), for n > 1. - _Reinhard Zumkeller_, Feb 04 2015, edited by _M. F. Hasler_, Mar 10 2018

%F For many values of n, the inverse Möbius transform of this sequence (g.f.: Sum a(n)*x^n/(1-x^n)) equals A005187, but this is not the case for composite n such that A297115(n) <> 0. The equality does hold for A297111 instead. - _Antti Karttunen_ & _M. F. Hasler_, Mar 10 2018

%t Insert[Table[If[PrimeQ[n],2*EulerPhi[n] - DigitCount[n, 2][[1]] + 1, 2*EulerPhi[n]], {n, 2, 100}], 1, 1] (* _Stefan Steinerberger_, Apr 11 2006 *)

%o (Haskell)

%o a035532 1 = 1

%o a035532 n = if a010051' n == 0 then phi2 else phi2 - a000120 n + 1

%o where phi2 = 2 * a000010 n

%o -- _Reinhard Zumkeller_, Feb 04 2015

%o (PARI) A035532(n)=2*eulerphi(n)-if(isprime(n),hammingweight(n)-1,n==1) \\ _M. F. Hasler_, Mar 10 2018

%Y Cf. A000010, A010051, A035531, A048881, A297111, A297115.

%K nonn,easy

%O 1,2

%A _Daniele Parisse_

%E More terms from _James A. Sellers_

%E Definition amended for a(1) = 1 by _M. F. Hasler_, Mar 10 2018