The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A033664 Every suffix is prime. 21
 2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 137, 167, 173, 197, 223, 283, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 503, 523, 547, 607, 613, 617, 643, 647, 653, 673, 683, 743, 773, 797, 823, 853, 883, 907, 937, 947 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Primes in which repeatedly deleting the most significant digit gives a prime at every step until a single-digit prime remains. Every digit string containing the least significant digit is prime. - Amarnath Murthy, Sep 24 2003 LINKS Alois P. Heinz, Table of n, a(n) for n = 1..66973 (first 8779 terms from T. D. Noe) Eric Weisstein's World of Mathematics, Truncatable Prime. MAPLE T:= proc(n) option remember; `if`(n=0, "", select(isprime, [seq(seq( seq(parse(cat(j, 0\$(n-i), p)), p=[T(i-1)]), i=1..n), j=1..9)])[]) end: seq(T(n), n=1..4); # Alois P. Heinz, Sep 01 2021 MATHEMATICA h8pQ[n_]:=And@@PrimeQ/@Most[NestWhileList[FromDigits[Rest[ IntegerDigits[ #]]]&, n, #>0&]]; Select[Prime[Range[1000]], h8pQ] (* Harvey P. Dale, May 26 2011 *) PROG (PARI) fileO="b033664.txt"; lim=8779; v=vector(lim); v[1]=2; v[2]=3; v[3]=5; v[4]=7; j=4; write(fileO, "1 2"); write(fileO, "2 3"); write(fileO, "3 5"); write(fileO, "4 7"); p10=1; until(0, p10*=10; j0=j; for(k=1, 9, k10=k*p10; for(i=1, j0, if(j==lim, break(3)); z=k10+v[i]; if(isprime(z), j++; v[j]=z; write(fileO, j, " ", z); )))) \\ Harry J. Smith, Sep 20 2008 (Haskell) a033664 n = a033664_list !! (n-1) a033664_list = filter (all ((== 1) . a010051. read) . init . tail . tails . show) a000040_list -- Reinhard Zumkeller, Jul 10 2013 (Python) from sympy import isprime, primerange def ok(p): # does prime p satisfy the property s = str(p) return all(isprime(int(s[i:])) for i in range(1, len(s))) print(list(filter(ok, primerange(1, 1000)))) # Michael S. Branicky, Sep 01 2021 (Python) # alternate for going to large numbers def agen(maxdigits): yield from [2, 3, 5, 7] primestrs, digits, d = ["2", "3", "5", "7"], "0123456789", 1 while len(primestrs) > 0 and d < maxdigits: cands = set(d+p for p in primestrs for d in "0123456789") primestrs = [c for c in cands if c[0] == "0" or isprime(int(c))] yield from sorted(map(int, (p for p in primestrs if p[0] != "0"))) d += 1 print([p for p in agen(11)]) # Michael S. Branicky, Sep 01 2021 CROSSREFS Cf. A024785, A032437, A020994, A024770, A052023, A052024, A052025, A050986, A050987, A069866, A038680, A010051, A000040. Sequence in context: A067905 A042993 A308711 * A024785 A069866 A125772 Adjacent sequences: A033661 A033662 A033663 * A033665 A033666 A033667 KEYWORD nonn,base,easy,nice AUTHOR N. J. A. Sloane EXTENSIONS More terms from Erich Friedman STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 00:22 EDT 2024. Contains 371850 sequences. (Running on oeis4.)