

A042993


Primes congruent to {0, 2, 3} mod 5.


11



2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 127, 137, 157, 163, 167, 173, 193, 197, 223, 227, 233, 257, 263, 277, 283, 293, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 433, 443, 457
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Also, primes p that are quadratic nonresidues modulo 5 (and from the quadratic reciprocity law, odd p such that 5 is a quadratic nonresidue modulo p). For primes p' that are quadratic residues modulo 5 (and such that 5 is a quadratic residue mod p') see A045468.  Lekraj Beedassy, Jul 13 2004
Primes p that divide Fibonacci(p+1).  Ron Knott, Jun 27 2014


REFERENCES

G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, Theorem 180


LINKS



EXAMPLE

For prime 7, Fibonacci(8) = 21 = 3*7, for prime 13, Fibonacci(14) = 377 = 13*29.


MATHEMATICA

Select[Prime[Range[100]], MemberQ[{0, 2, 3}, Mod[#, 5]]&] (* Harvey P. Dale, Mar 03 2012 *)


PROG

(Magma) [p: p in PrimesUpTo(600)  p mod 5 in [0, 2, 3]]; // Vincenzo Librandi, Aug 09 2012


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



STATUS

approved



