login
A308711
Left-truncatable primes in base-10 bijective numeration.
1
2, 3, 5, 7, 13, 17, 23, 37, 43, 47, 53, 67, 73, 83, 97, 103, 107, 113, 137, 167, 173, 197, 223, 283, 307, 313, 317, 337, 347, 353, 367, 373, 383, 397, 443, 467, 503, 523, 547, 607, 613, 617, 643, 647, 653, 673
OFFSET
1,1
COMMENTS
Not identical to A033664; in fact a strict subsequence of A033664. For example, 2003 belongs to A033664 but not to this sequence, since in bijective numerals 2003 is 19X3, whose suffix 9X3 = 1003 = 17 * 59.
LINKS
PROG
(Sage)
DIGITS = "123456789X"
DECODE = {d: i + 1 for i, d in enumerate(DIGITS)}
def decode(s):
return reduce(lambda n, c: 10 * n + DECODE[c], s, 0)
def search(s):
n = decode(s)
if n > 0:
if not is_prime(n): return
yield n
for digit in DIGITS: yield from search(digit + s)
full = sorted(search(""))
full[:10]
CROSSREFS
Sequence in context: A234695 A067905 A042993 * A033664 A024785 A069866
KEYWORD
nonn,base,easy,fini,full
AUTHOR
Robin Houston, Jun 19 2019
STATUS
approved